viernes, 29 de octubre de 2010

Motor de explosión.

En este vídeo podéis apreciar las distintas partes que componen el motor de explosión utilizado por la mayoría de los automóviles.


Hoy en día ya se está extendiendo el uso de los motores híbridos (pequeño motor de gasolina + motor eléctrico) que serán los vehículos de un futuro cercano, un ejemplo es el Toyota Prius que empieza cogiendo mercado con su publicidad y los modelos que ya se pueden ver por la calle.


jueves, 28 de octubre de 2010

Naturaleza

En el presente vídeo se muestra el paso del tiempo mediante fotografías que destacan ese transcurrir.

Una naturaleza en las que músicos, filósofos, artistas, científicos, etc. Se inspiran e inspiraron para crear sus obras.

Un ejemplo es la música que se puede escuchar de fondo (algunos segundos)de un clásico: Vivaldi.

Sin más premisas ver y escuchar el vídeo.

 

domingo, 24 de octubre de 2010

Ludwig van Beethoven.

Ludwig van Beethoven (Alemania, 1770 – Austria, 1827) fue un compositor, director de orquesta y pianista alemán. Su legado musical se extendió, cronológicamente, desde el período clásico hasta inicios del romanticismo musical.

Considerado el último gran representante del clasicismo vienés (después de Christoph Willibald Gluck, Joseph Haydn y Wolfgang Amadeus Mozart), Beethoven consiguió hacer trascender a la música del romanticismo, motivando a la influencia de la misma en una diversidad de obras musicales a lo largo del siglo XIX. Su arte se expresó en numerosos géneros y aunque las sinfonías fueron la fuente principal de su popularidad internacional, su impacto resultó ser mayormente significativo en sus obras para piano y música de cámara.

Su producción incluye los géneros pianísticos (32 sonatas para piano), de cámara (16 cuartetos de cuerda, 7 tríos, 10 sonatas para violín y piano), vocal (lieder y una ópera: Fidelio), concertante (5 conciertos para piano y orquesta, uno para violín y orquesta) y orquestal (9 sinfonías, oberturas, etc.), así como el ciclo de las Nueve Sinfonías, entre ellas la Tercera Sinfonía, también llamada Eroica,en mi bemol mayor, la Quinta Sinfonía, en do menor y la Novena Sinfonía, en re menor (cuya música del cuarto movimiento, está basada en la Oda a la Alegría).

La familia de Ludwig van Beethoven, cuyos miembros contaban con una tradición musical naciente, vivía bajo condiciones modestas. Su abuelo paterno, llamado también Ludwig, (Malinas, 1712 – 1773), era descendiente de una familia de campesinos y granjeros originarios de Brabante en la región de Flandes (Bélgica) que se trasladaron a Bonn en el siglo XVIII. La partícula van de su nombre, contrario a lo que pudiera creerse, no posee orígenes nobles, mientras que Beethoven probablemente pudo haberse derivado de Betuwe, una localidad de Lieja, aunque otra hipótesis apunta a que el apellido proviene de Beeth, que quiere decir remolacha y Hoven, que es el plural de Hof, que significa granja. Por ello, Beethoven quiere decir «granjas de remolachas».

     Retrato de Beethoven en 1820, de Joseph Karl Stieler
Para más información consultar fuente aquí.


jueves, 21 de octubre de 2010

El combustible de la evolución.

No es otro que la energía eléctrica, la cual se genera en centrales eléctricas. En dichas centrales es donde se transforma otro tipo de energía en energía eléctrica, mediante distintos procesos dependiendo del tipo de central. Así tenemos las hidroélectricas que aprobechan la energía cinética y potencial del agua, los parques eólicos que aprovechan la energía cinética del viento, las centrales nucleares que utilizan la energía producida por la fisión nuclear (ruptura de los núcleos atómicos al bombardearlos con neutrones) del plutonio o uranio, las centrales térmicas utilizan como combustible carbón, fuel  o/y gas natural, las centrales de biomasa que utilizan restos forestales, agrícolas, ... las centrales solares aprovechan la energía del sol, las centrales geotérmicas aprovechan la energía del interior de la tierra, las centrales mareomotrices que aprovechan las subidas y bajadas de las mareas, etc. 

Esta energía eléctrica debe ser transportada a los lugares de consumo mediante cables conductores, normalmente de aluminio (Al) en el caso de las líneas de alta tensión. Estas líneas de transporte forman la red
eléctrica que llega a las viviendas, pueblos, ciudades, fábricas, transporte ferroviario, etc.

Este es un tema muy extenso, falta hablar de la energía de las baterías.


Pulsar aquí para ver la presentación en fotos.

Central Geotérmica.

En muchos lugares de la Tierra se producen fenómenos geotérmicos que pueden ser aprovechados para generar energía útil para el consumo. Estas fuerzas se desarrollan en el interior de la corteza terrestre, normalmente a profundidades de 50 km, en una franja llamada sima o sial; algunas de sus manifestaciones sobre la superficie son los volcanes activos.

Conforme descendemos hacia el interior de la corteza terreste se produce un aumento gradual de temperatura, estimado en 1 grado cada 37 metros de profundidad. Sin embargo, en determinadas zonas de nuestro planeta, por ejemplo en algunas islas volcánicas de Canarias, las altas temperaturas se encuentran a nivel de la superficie. En estos casos, es cuando una instalación geotérmica resulta más rentable.

Para aprovechar la energía geotérmica se recurre a sistemas similares a los empleados en energía solar con turbina, es decir, calentamiento de un líquido que puede tener distintas aplicaciones, pero que habitualmente se destina a producir vapor con el que se da impulso a la turbina, que a su vez mueve un generador eléctrico.

Los sistemas geotérmicos producen un rendimiento mayor con respecto a otros sistemas, y además tienen un costo de mantenimiento menor. De hecho, la única pieza móvil de una central geotérmica es el sistema de turbina-generador, y por tanto todo el conjunto tiene una vida útil más larga. Además, la energía utilizada está siempre presente, lo cual apenas implica variaciones, como sucedería en otros sistemas que dependen, por ejemplo, del caudal de un río o del nivel de radiación solar.

El funcionamiento de una central geotérmica es bastante simple: consta de una perforación practicada a gran produndidad sobre la corteza terrestre (unos 5 km), con objeto de obtener una temperatura mínima de 150º C, y en la cual se han introducido dos tubos en circuito cerrado en contacto directo con la fuente de calor.


Desde la superficie se inyecta agua fría a través de uno de los extremos del tubo, la cual se calienta al llegar al fondo formando vapor de agua y regresando a chorro a la superficie a través del otro tubo. En el extremo de éste está acoplada una turbina-generador que suministra la energía eléctrica para su distribución. El agua enfriada es devuelta de nuevo al interior por el primer tubo para repetir el ciclo.

A pesar de su sencillez, el sistema está pensado fundamentalmente para aplicaciones que no requieran un suministro de energía a gran escala, debido a las características geotérmicas de las rocas. Al contrario de lo que sucede con los metales, las rocas o la arena no tienen capacidad conductora del calor, es decir, la conservan, por eso si se utilizase una central geotérmica con intención de producir energía a gran escala llegaría un momento en que el proceso se detendría. El motivo, es que la sima del interior de la corteza terrestre donde está el calor aprovechable se va enfriando progresivamente conforme se le inyecta agua fría, y si el régimen de inyección es alto llegará un momento en que la sima ha cedido más calor del que puede recuperar, precisamente por su baja capacidad de conducir la temperatura. Este inconveniento impide el funcionamiento continuo de la central, deteniéndose a determinados intervalos hasta que la roca recupera una temperatura suficiente para reanudar el funcionamiento normal.

En algunas regiones de la tierra este inconveniente no se produce, porque las altas temperaturas están casi a flor de tierra, lo que permite extender tuberías en horizontal, en vez de en vertical, garantizándose que la recuperación de la temperatura de la roca o de la arena se realice casi a la par que su enfriamiento.

martes, 19 de octubre de 2010

Guglielmo Marconi.

Guglielmo Marconi, en español Guillermo Marconi  (1874 - 1937) fue un ingeniero eléctrico italiano y ganador del Premio Nobel de Física en 1909, conocido por el desarrollo de un sistema de telegrafía sin hilos (T.S.H.) o radiotelegrafía.
Aunque muchos inventores contribuyeron a la aparición de la telegrafía sin hilos tales como Orsted, Faraday, Hertz, Tesla, Edison, Alejandro S. Popov, Cervera  y otros, Marconi es considerado como la persona que consiguió la primera patente de la radio, aunque en un solo país - el 2 de julio de 1897  en el Reino Unido
Fue Marconi quien desarrolló comercialmente la radio. Tesla presenta la patente correspondiente en 1897, dos años después de que Marconi lograra su primera transmisión de radio. No obstante, Marconi registra su patente recién el 10 de noviembre de 1900 y es rechazada por ser considerada una copia de la patente de Tesla.
Atraído por la idea de transmitir ondas de radio a través del Atlántico, marchó a Saint John's (Terranova), donde, el 12 de diciembre de 1901 recibió la letra «S» en Código Morse. No obstante, la primera comunicación transatlántica completa no se hizo hasta 1907.
Su nombre devino mundialmente famoso a consecuencia del papel que jugó la radio salvando de cientos de vidas con ocasión de los desastres del Republic (1909) y del Titanic (1912).
Obtuvo, en 1909, el premio Nobel de Física, que compartió con Karl Ferdinand Braun. Se dice que Nikola Tesla, rechazó el premio Nobel por que decía precisamente que Marconi había tomado patentes suyas para hacer su invento y que hasta que le retirasen el premio a Marconi, Tesla no lo aceptaría.

lunes, 18 de octubre de 2010

Nikola Tesla.

El serbio Nikola Tesla (1856-1943), fue físico, matemático, ingeniero eléctrico y célebre inventor. Desarrolló las bases para la generación de corriente alterna. En su honor la unidad de inducción magnética en el S.I. lleva su nombre (tesla,T).

Estudió ingeniería eléctrica en Praga. En 1881 viajó a Budapest para trabajar en una compañía de telégrafos estadounidense.

En 1882 se traslada a París para trabajar en una de las compañías de Thomas Alva Edison, donde escribío la teoría de la corriente alterna con la cual ideó el primer motor eléctrico de inducción.

En 1884 se trasladó a Nueva York, creando su propia compañía en 1886. En 1887 logra construir el motor de inducción de corriente alterna. Posteriormente sin medios económicos para realizar todas sus investigaciones e inventos, conoció a Westinghouse, un científico y empresario adinerado que logró, mediante un acuerdo económico, comprarle las patentes de sus inventos y lo contrató para trabajar con él en sus laboratorios Westinghouse Electric, donde concibió el sistema polifásico para trasladar la electricidad a largas distancias.

En 1893 se hizo en Chicago una exhibición pública de la corriente alterna, demostrando su superioridad sobre la corriente continua de Edison.

Ese mismo año Tesla logró transmitir energía electromagnética sin cables, construyendo el primer radiotransmisor. Presentó la patente correspondiente en 1897, dos años después Guglielmo Marconi lograra su primera transmisión de radio. Marconi registró su patente el 10 de noviembre de 1900 y fue rechazada por ser considerada una copia de la patente de Tesla.

Se inició un litigio entre la compañía de Marconi y Tesla. Tras recibir el testimonio de numerosos científicos destacados, la Corte Suprema de los Estados Unidos de América falló en 1943 a favor de Tesla (la mayoría de los libros mencionan a Marconi como el inventor de la radio)

Nota:
un especialista en historia de la radiodifusión, Ernst Erb, sostuvo que un alemán inventó la radio antes que Tesla. Las pruebas existentes no fueron consideradas suficientes, por lo que su afirmación no cuenta con la aprobación general de los demás historiadores.

Fotografía de Nikola Tesla en 1890 a los 34 años de edad.